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A 2-dimensional supersymmetric sigma model consists of the

following structure:

I the target space, a Riemannian manifold M.

I the world sheet, a Riemann surface Σ with a spin structure S.

The fields are parameterized by world sheet embeddings

φ ∈MΣ := C∞(Σ,M);

for each φ we have an associated Hilbert space of spinors,

ψ ∈ Vφ := L2(Σ, S⊗φ∗TM).

The action functional is

S(φ, ψ) :=

∫

Σ

{
‖dφ‖2 +

〈
ψ, /Dφψ

〉}
dvol Σ.



A particular problem is to give rigorous sense to the fermionic

path integral

Afer (φ) =

∫

ψ∈Vφ

exp

(∫

Σ

〈
ψ, /Dφψ

〉
dvolΣ

)

Dψ

which suffers from the absence of an appropriate measure.

Well-known solution: associate to each φ a complex line Pφ and

identify Afer (φ) as a well-defined element in Pφ.

Varying φ over MΣ := C∞(Σ,M), the complex lines Pφ form a

smooth line bundle Pfaff ( /D) over MΣ, and the elements Afer (φ)

form a smooth section Afer ∈ Γ(MΣ,Pfaff ( /D)).



The space MΣ = C∞(Σ,M) of bosonic fields parameterizes a

family of Z2-graded Hilbert spaces

Hφ := L2(Σ, S⊗R φ
∗TM).

On every Hilbert space Hφ we have the Dirac operator D on S

twisted by the Levi-Civita connection φ∗∇ on M, and additionally

twisted by a natural quaternionic structure J on S,

/Dφ := J ◦ (D⊗φ∗∇).

Thus, /Dφ is an even, anti-self-adjoint operator on Hφ.



We regard the even, anti-self-adjoint operator /Dφ as a

skew-symmetric bilinear form

(−, /Dφ−) :=

∫

Σ

〈
−, /Dφ−

〉
dvolΣ.

We introduce a spectral cut µ > 0 for /Dφ, and obtain an

2k-dimensional vector space Hµ,+φ , equipped with the skew form

(−, /Dφ−) ∈ Λ2(Hµ,+φ )∗.

It defines an element

pfaff µ
φ :=

1

k!
(−, /Dφ−)∧k ∈ Λ2k (Hµ,+φ )∗ =: detHµ,+φ .



The Berezin integral is defined for any finite-dimensional vector

space V :

∫

V
: ΛpV ∗ // det V ∗ : α � //






α if p = dim V

0 else

If dim V = 2k and α ∈ Λ2V ∗, then
∫

V
exp(α) =

1

k!
α∧k .

We apply this to V = Hµ,+φ and α = (−, /Dφ−). Then we have

rigorously interpreted

∫

Hµ,+φ

exp

(∫

Σ

〈
−, /Dφ−

〉
dvolΣ

)

= pfaff µ
φ ∈ detHµ,+φ .



It remains to get rid of the spectral cut µ.

We work over the open set

Uµ := {φ ∈ B | µ /∈ spec( /Dφ)}.

Hµ,+φ are fibres of a smooth, finite-dimensional vector bundle Hµ,+.

pfaff µ
φ are the values of a smooth section pfaff µ of det(Hµ,+).

The open sets Uµ cover MΣ. One can glue the determinant line

bundles det(Hµ,+) in two different ways:

1.) one obtains the usual determinant line bundle det /D

2.) one obtains a line bundle Pfaff ( /D), the Pfaffian line bundle.

The sections pfaff µ glue to a global section pfaff of Pfaff ( /D).



Summarizing, the fermionic path integral is rigorously defined by

Afer (φ) := pfaff (φ),

forming a smooth section Afer ∈ Γ(MΣ,Pfaff ( /D)).

Thus, the integrand for the full path integral,

A(φ) = exp

(∫

Σ
‖dφ‖2 · dvolΣ

)

· Afer (φ)

is a smooth section of Pfaff ( /D).

It is not a function A : MΣ // C. This situation is called an

anomaly (“global”, “fermionic”,...). Our mission is to cancel this

anomaly, for instance by providing a trivialization of Pfaff ( /D).
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We want to trivialize the line bundle Pfaff ( /D) over

MΣ = C∞(Σ,M).

Theorem (Freed ’03)

If M is equipped with a spin structure, then

c1(Pfaff ( /D)) =

∫

Σ
ev∗( 1

2 p1(M))

where ev : MΣ×Σ // M is the evaluation map, and
1
2 p1(M) ∈H4(M,Z) is the first fractional Pontryagin class of M.

In particular, Pfaff ( /D) is trivializable if 1
2 p1(M) = 0. Spin

manifolds that satisfy this condition are called string manifolds.

But we need more: we need a trivialization of Pfaff ( /D).



For the 2-torus Σ = S1×S1, integration factors through the free

loop space LM := C∞(S1,M):

H4(M,Z)

∫
S1 ev∗

// H3(LM,Z)

∫
S1 ev∗

// H2(MΣ,Z)

1
2 p1(M) � // λ

� // c1(Pfaff ( /D))

The intermediate step λ ∈H3(LM,Z) is an analog of the 3rd

integral Stiefel-Whitney class for the loop space.

We see that Pfaff ( /D) is trivializable if λ = 0.



Let FM be the frame bundle of M, with the structure group

reduced to Spin(n).

Theorem (Killingback ’87; McLaughlin ’92)

λ vanishes if and only if the structure group of LFM can be

reduced to the universal loop group extension

1 // U(1) // ̂LSpin(n) // LSpin(n) // 1.

Such a reduction is called spin structure on LM.

Killingback’s idea: a spin structure on LM should give a

trivialization of Pfaff ( /D). However, this has never been confirmed.



The relation between the class λ ∈H3(LM,Z) and spin structures

on LM can be understood via the spin lifting gerbe.

The spin lifting gerbe is a bundle gerbe over LM with

Dixmier-Douady class λ:

SLM =






L //

��

̂LSpin(n)

��
LFM

��

LFM [2]
Lg //oo

oo
LSpin(n)

LM

Theorem (Murray ’95)

Trivializations of SLM are in 1:1 correspondence with reductions,

i.e. with spin structures on LM.
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We return to the original insight that Pfaff ( /D) is trivializable if and

only if M is a string manifold, i.e. 1
2 p1(M) ∈H4(M,Z) vanishes.

Nowadays we have a nice higher-geometric structure which is

classified by H4(M,Z): bundle 2-gerbes.

For the class 1
2 p1(M) there is a particularly nice bundle 2-gerbe:

the Chern-Simons bundle 2-gerbe.

CSM =






g∗Gbas

��

// Gbas

��
FM

��

FM [2]
oo
oo g

// Spin(n)

M

(Carey-Johnson-Murray-Stevenson-Wang ’05)



A trivialization of the Chern-Simons bundle 2-gerbe CSM consists

of a bundle gerbe S over FM whose restriction to each fibre is Gbas .

Theorem (Stevenson ’04)

A trivialization of CSM exists if and only if 1
2 p1(M) = 0.

We call trivializations of the Chern-Simons 2-gerbe string

structures.

Thus, we have the following implications:

M admits string structures ks +3 M is string

+3 Pfaff ( /D) is trivializable



The integration of cohomology classes

H4(M,Z) // H3(LM,Z) , 1
2 p1(M) � // λ

H4(M,Z) // H2(MΣ,Z) , 1
2 p1(M) � // c1(P)

lift to functors defined on the (homotopy) category of bundle

2-gerbes with connections:

TS1 : h1(2-Grb∇(M)) // h1Grb(LM)

TΣ : h1(2-Grb∇(M)) // LineBun(MΣ)

These functors are called transgression functors.



In order to apply transgression, we need to equip the Chern-Simons

2-gerbe CSM with a connection. This can be done in a canonical

way using the connection on the basic gerbe Gbas of curvature

H(X ,Y ,Z ) = 〈X , [Y ,Z ]〉, and the Chern-Simons 3-form

〈A ∧ dA〉+
2

3
〈A ∧ [A ∧ A]〉 ∈Ω3(FM).

where A is the Levi-Civita connection 1-form on FM.

In order to transgress trivializations, we also need to equip them

with connections; these are called string connections.

Theorem (KW ’09)

Every string structure admits a string connection, and the set of

string connections is affine.



A geometric string structure is a pair of a string structure and a

string connection.

Theorem (KW ’09)

The transgression of CSM to the loop space is the spin lifting

gerbe SLM . In particular, every geometric string structure on M

gives a spin structure on LM.

Theorem (Bunke ’10)

The transgression of CSM to the mapping space MΣ is Pfaff ( /D).

In particular, every geometric string structure gives a trivialization

of Pfaff ( /D).

Conclusion: geometric string structures cancel the anomaly of

the supersymmetric sigma model.



Remark 1 – Classification of string structures

I The set of isomorphism classes of string structures on a string

manifold M is parameterized by H3(M,Z).

I The set of isomorphism classes of geometric string structures

on a string manifold M is parameterized by the differential

cohomology group Ĥ3(M,Z).

Recall that Ĥ3(M,Z) is the group of B-fields on M, i.e. B-fields

act on the geometric string structures. In particular, 2-forms

B ∈Ω2(M) act on the string connections.

Under this action, the trivialization of Pfaff ( /D) changes by

exp 2πi
∫

Σ
B .

In particular, it depends on the choice of the string connection.



Remark 2 – The covariant derivative of a string connection

Every geometric string structure on M determines a 3-form

K ∈Ω3(M) with dK = 1
2 〈FA ∧ FA〉.

The B-field action of B ∈Ω2(M) takes K to K + dB .

The Pfaffian Pfaff ( /D) comes equipped with the Bismut-Freed

connection. The section of Pfaff ( /D) has covariant derivative
∫

Σ
ev∗K ∈Ω1(MΣ).

Höhn-Stolz conjecture: if Ricg > 0 and K = 0, then the Witten

genus of M vanishes in tmf −n(pt).



Remark 3 – The string 2-group

String structures can also be understood in terms of a (higher)

reduction problem in non-abelian gerbes.

There is a central extension

BU(1) // String(n) // Spin(n)

of Lie 2-groups, and one can try to “reduce” the frame bundle FM

to a non-abelian gerbe with structure 2-group String(n).

Theorem (KW-Nikolaus ’12)

The Chern-Simons 2-gerbe is the (higher) lifting gerbe of this

reduction problem, i.e. there is a 1:1 correspondence between

string structures and reductions of FM to String(n).



Remark 4 – Spin structures on loop spaces revisited

Recall: transgression takes string structures on M to spin

structures on LM.

The problem is that transgression is neither injective nor surjective.

We have to describe the image of transgression.

Theorem (KW ’14)

There is a 1:1 correspondence between

string structures on M and spin struc-

tures on LM equipped with fusion prod-

uct and thin homotopy equivariance.



Summary:

I A string structure is higher geometrical structure whose

existence is obstructed by 1
2 p1(M) ∈H4(M,Z).

I Together with a string connection, it defines a trivialization of

the Pfaffian line bundle of a family of Dirac operators

parameterized by a space of maps MΣ.

I The integrand of the path integral of the supersymmetric

sigma model with target M is a section in that Pfaffian

bundle.

Given a geometric string structure it becomes a smooth map,

i.e. the model becomes anomaly-free.
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