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1.) What are string connections?

2.) What are string connections good for?



Setup:

I Riemannian manifold (M, g) of dimension n

I Frame bundle PO(n)

Whitehead tower:

I . . . String(n) Spin(n) SO(n) O(n)

I Orientation = Lift of PO(n) to SO(n)

Obstruction: w1 ∈ H1(M,Z2)

I Spin structure = Lift of PSO(n) to Spin(n)

Obstruction: w2 ∈ H2(M,Z2)

I String structure = Lift of PSpin(n) to String(n)

Obstruction: 12p1 ∈ H
4(M,Z)



Question:

I Ag Levi-Cevita connection on PO(n)
I Does Ag lift along lifts

. . . PString(n) PSpin(n) PSO(n) PO(n) ?

Fact:

I Once a spin structure is given, Ag lifts uniquely.

What is the corresponding statement for string structures?

I Question is not well-defined: String(n) is not a Lie group!
I Way out:

(a) use strict Fréchet Lie 2-group (Baez et al. ’07)
(b) use group object in smooth stacks (Schommer-Pries ’09)
(c) do not use the string group (this talk)



Fact:

I Associated to any Spin(n)-bundle P over M is a
finite-dimensional and smooth 2-gerbe CSP over M,
called Chern-Simons 2-gerbe.

I Its characteristic class is 12p1 ∈ H
4(M,Z).

Theorem (KW)

There is a canonical bijection

{
Equivalence
classes of string
structures on P

}

∼=

{
Isomorphism classes of
trivializations of CSP

}

Definition (replacing previous definition)

A string structure on P is a trivialization

CSP
T

I

of the Chern-Simons 2-gerbe. Here I is the trivial gerbe.



Another fact:

I Associated to a connection A on P is a connection ∇A on the
Chern-Simons 2-gerbe CSP .

Definition

A string connection for (T,A) is an extension of the string
structure T to a connection-preserving trivialization

(CSP ,∇A)
(T,H)

(I,∇H).

The connection ∇H on I is given by H ∈ Ω3(M).

Theorem (KW)

For any pair (T,A) there exists a string connection. Their
choices form an affine space.



What are string connections?

I Connection-preserving trivializations of the
Chern-Simons 2-gerbe CSP .

What are they good for?



Transgression:

I Σ a closed surface

I Transgression is a functorial assignment

{
2-gerbes over
M with
connection

}
T

{
hermitian line bundles
over C∞(Σ,M) with

connection

}

I On characteristic classes, it is integration along the fibre:

H4(M,Z)

∫
Σ ev

∗

H2(C∞(Σ,M),Z)

What is the transgression of the Chern-Simons 2-gerbe?

I It is a Pfaffian line bundle over C∞(Σ,M).

What does the string connection (T,H) do?
I By functorality, it trivializes this Pfaffian line bundle.



Pfaffian bundle:

I (Σ, γ) Riemann surface with spin structure, SΣ spinor bundle.

I For each map X : Σ M, there is a twisted Dirac
operator

DX : Γ(SΣ⊗ X
∗TM) Γ(SΣ⊗ X ∗TM).

I The Pfaffian of DX is a complex line.

Theorem (Freed ’87)

These Pfaffians form a hermitian line bundle Pfaff (D) with
connection over C∞(Σ,M).

Theorem (Bunke ’09)

There exists a canonical isomorphism

T (CSP ,∇A) ∼= Pfaff (D).



A supersymmetric sigma model is given by:

I Riemannian manifold (M, g)

I string structure T with string connection H for (T,Ag ).

A field is:

I Riemann surface (Σ, γ) with spin structure

I map X : Σ M “Boson”

I section ψ ∈ Γ(SΣ⊗ X ∗TM) “Fermion”

Action functional:

I SΣ(X , ψ) :=

∫

Σ
dvolγ

{
1

2
〈dX , dX 〉g + 〈ψ,DXψ〉g

}



What does the string connection do?

I The fermionic path integral is a well-defined element

s(X ) :=

∫
dψ e

∫
Σ dvolγ 〈ψ,DXψ〉g ∈ Pfaff (D)

(Freed-Moore ’06)

I The remaining Feynman amplitude

AΣ(X ) := e
∫
Σ dvolγ

1
2
〈dX ,dX 〉g ∙ s(X )

is a section AΣ ∈ Γ(Pfaff (D)).
I Since the string connection trivializes Pfaff (D), the section
AΣ becomes a function

AΣ : C
∞(Σ,M) C.



What are string connections?

I Connection-preserving trivializations of the
Chern-Simons 2-gerbe CSP .

What is a string connection good for?

I It trivializes the Pfaffian line bundle Pfaff (D), and makes the
Feynman amplitude of the supersymmetric sigma model a
function.

In terminology of Freed and Moore, it “sets the quantum
integrand”.



Literature:

I J. C. Baez, A. S. Crans, D. Stevenson and U. Schreiber,
From Loop Groups to 2-Groups, Homology, Homotopy Appl.
9(2), 101–135 (2007), arxiv:math.QA/0504123.

I U. Bunke, String Structures and Trivialisations of a Pfaffian
Line Bundle, preprint, arxiv:0909.0846.

I D. S. Freed and G. W. Moore, Setting the Quantum
Integrand of M-Theory, Commun. Math. Phys. 263(1),
89–132 (2006), arxiv:hep-th/0409135.

I D. S. Freed, On Determinant Line Bundles, in Mathematical
Aspects of String Theory, edited by S. T. Yau, World
Scientific, 1987.

I C. Schommer-Pries, A finite-dimensional Model for the String
Group, in preparation.

I K. Waldorf, String Connections and Chern-Simons Theory,
preprint, arxiv:0906.0117.


