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1 Lecture I: Gerbes and loop groups

1.1 Motivation: Chern-Simons invariant

The usual definition of the Chern-Simons action functional goes as follows.

We have a Lie group G and a symmetric bilinear form 〈−,−〉 : g × g // R on its Lie

algebra g. Let P be a principal G-bundle over a 3-dimensional closed oriented manifold M

with a connection A ∈ Ω1(P, g). Form the Chern-Simons 3-form

CS(A) := 〈A ∧ dA〉 +
2
3
〈A ∧ [A ∧ A]〉 ∈ Ω3(P ).

We assume that P has a section s : M // P . Then, the Chern-Simons invariant of (P,A)

is defined by

S〈−,−〉(P,A) := exp

(

2πi
∫

M
s∗CS(A)

)

.

Two problems arise: first, what if P has no global section? Second, is this independent

of the choice of the section?

1.2 Gerbes and connections

A gerbe with connection over a smooth manifold M consists of:

(i) a cover {Uα}α∈A of M by open sets Uα,



(ii) on each open set, a 2-form Bα ∈ Ω2(Uα),

(iii) on each double intersection Uα ∩ Uβ , an S1-bundle Pαβ with connection of curvature

Bβ − Bα,

(iv) on each triple intersection Uα ∩Uβ ∩Uγ , a connection-preserving bundle isomorphism

μαβγ : Pαβ ⊗ Pβγ
// Pαγ

such that the diagram

Pαβ ⊗ Pβγ ⊗ Pγδ
μαβγ ⊗id

//

id⊗μβγδ

��

Pαγ ⊗ Pγδ

μαγδ

��
Pαβ ⊗ Pβδ μαβδ

// Pαδ

is commutative.

Just like a bundle with connection, a gerbe with connection has a curvature, but this

curvature is a 3-form curv(G) ∈ Ω3(M): consider the local 3-forms dBα ∈ Ω3(Uα), and

check on a double overlap that

dBβ − dBα = dcurv(Pαβ) = 0,

which implies via the sheaf property of forms that there exists a unique 3-form H such

that H|Uα = Bα. This 3-form is closed and is called the curvature of the connection on the

gerbe.

Just like a S1-bundle has a characteristic class, its Chern class, a gerbe has a character-

istic class; it lives in H3(M,Z) and is called its Dixmier-Douady class. It is given as follows.

After a possible refinement of the open cover we can assume that all double intersections

are contractible. This implies that all S1-bundles Pαβ are trivializable. Upon choosing

trivializations, the bundle isomorphisms μαβγ can be identified with smooth maps

gαβγ : Uα ∩ Uβ ∩ Uγ
// S1.

Problem 1.2.1. Show that gαβγ is a Čech 2-cocycle with values in the sheaf of smooth S1-

valued functions, and show that its Čech cohomology class [g] ∈ Ȟ2(M, S1) is independent

of all choices involved in the construction of gαβγ .
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The exponential sequence

1 // S1 // R // Z // 1

of sheaves induces a long exact sequence in Čech cohomology. Since Ȟn(M,R) = 0 for

n > 0, this sequence splits into isomorphisms

Ȟn(M, S1) ∼= Hn+1(M,Z) , n > 0.

The image of the class [g] in H3(M,Z) is the Dixmier-Douady class of the gerbe, denoted

by DD(G).

Problem 1.2.2. Show that the images of DD(G) and curv(G) ∈ Ω3
cl(M) in H3(M,R)

coincide. In particular, the curvature has “integral periods”. In order to do this, you have

to go through the construction of the Čech-de Rham isomorphism H3
dR(M) ∼= H3(M,R).

Many other familiar things carry over from bundles to gerbes: pullback (take the preim-

age open cover and pullback everything), tensor product (take the common refinement of

the open covers, restrict, and take the tensor products of the S1-bundles and bundle iso-

morphisms), duals (take the dual S1-bundles and the inverse of the dual isomorphisms).

Literature: [Mur96, Hit01, Hit03, Mur10]

1.3 Gerbes on Lie groups

The link between Chern-Simons theory and gerbes are Lie groups. If G is a Lie group

from the Cartan series, i.e. it is compact, connected, simple, and simply-connected, then

H3(G,Z) ∼= Z. In de Rham cohomology, these classes can be represented by integer multi-

ples of the canonical 3-form

H :=
1
3
〈θ ∧ [θ ∧ θ]〉 ,

where θ ∈ Ω1(G, g) is the left-invariant Maurer-Cartan form on G, and 〈−,−〉 denotes

the Killing form on the Lie algebra g, normalized such that H represents a generator of

H3(G,Z) in real cohomology.

It is an interesting and typically difficult problem to construct a “basic gerbe”, a bundle

gerbe over G with a connection of curvature H, whose Dixmier-Douady class generates

H3(G,Z). Several rather different such constructions are known. We present the first and

easiest one, which applies to G = SU(n).
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Any matrix A ∈ G has precisely n eigenvalues ρi, counted with multiplicities, which

we can write as ρi = exp(2πiλα), with λα ∈ R uniquely fixed by requiring that

(λ1, ..., λn) ∈ A :=

{

(λ1, ..., λn) ∈ Rn

∣
∣
∣
∣
∣

n∑

α=1

λα = 0 and λ1 ≥ λ2 ≥ ... ≥ λn ≥ λ1 − 1

}

.

The map q : G // A : A � // (λ1(A), ..., λn(A)) is continuous and invariant under the

conjugation action of G on itself.

With λn+1 := λ1 − 1 we define define open sets

Aα := {(λ1, ..., λn) ∈ A | λα(A) > λα+1(A)} , α = 1, ..., n.

These open sets cover A: if for λ = (λ1, ..., λn) ∈ A there exist α < β with λα 6= λβ then

λ ∈ Aα. If λα = λβ for all α, β, then λα = 0 for all α; thus λn > λn+1 and λ ∈ An. It

follows that the open sets

Uα := q−1(Aα)

form a cover of G.

On a more Lie-theoretical level,

T := {(ρ1, ..., ρn) ∈ U(1)n | ρ1 ∙ ... ∙ ρn = 1} ⊆ G

forms a maximal torus of G = SU(n), i.e. a maximal, compact connected abelian subgroup.

Its Lie algebra is the vector space

t := {(λ1, ..., λn) ∈ Rn | λ1 + ... + λn = 0} ⊆ g.

Note that g consists of the anti-hermitian matrices of trace zero. The subset

C := {(λ1, ..., λn) ∈ t | λ1 ≥ λ2 ≥ ... ≥ λn}

forms a positive Weyl chamber , and the subset A ⊆ C forms the associated Weyl alcove .

The Weyl alcove A is an (n−1)-dimensional simplex whose vertices are points (μn, ..., μn+1),

characterized by requiring that μα ∈ Aβ if and only if α = β.

Next we want to define the S1-bundles over Uα ∩ Uβ . We first construct for α < β a

hermitian vector bundle Vαβ over Uα ∩ Uβ . Its fibre over a point A ∈ Uα ∩ Uβ is given by

Vαβ(A) :=
β⊕

γ=α+1

Eγ(A) ⊆ Cn,
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where Eγ(A) ⊆ Cn denotes the eigenspace of A to the eigenvalue ρα = exp(2πiλγ(A)).

Note that the dimension of Eγ(A) is equal to the multiplicity of ρα, so that Vαβ(A) has

rank β−α. Each fibre Vαβ(A) inherits the standard hermitian metric of Cn. One can show

that this gives a smooth hermitian vector bundle over Uα ∩ Uβ .

In order to see this, one uses the theory of Grassmann manifolds. The set of k-

dimensional sub-vector spaces of Cn can be identified with the set Gk(Cn) of orthogonal

projections P : Cn // Cn with k-dimensional image. One can then show that Vαβ(A) is

the image of the orthogonal projection

PA := −
1

2πi

∫

γ
(A − z)−1dz

where γ is a closed curve in C which does not meet the eigenvalues of A and encloses those

eigenvalues that lie between α + 1 and β.

The set Gk(Cn) is a homogeneous space under the action of U(n), which equips it with

a smooth manifold structure. In a neighborhood of a matrix A one can keep γ fixed, and

show this way that Φαβ : Uα ∩ Uβ
// Gβ−α(Cn) : A � // PA is smooth. The manifold

Gk(Cn) carries a canonical hermitian vector bundle Tk of rank k, whose fibre over a point

P is im(P ). So we get Vαβ = Φ∗
αβTk.

For α < β < γ we have

Vαβ ⊕ Vβγ = Vαγ .

For α = β we let Vαα be the trivial bundle, and for α > β we define Vαβ := V ∗
βα. Over each

double intersection, we let Lαβ be the determinant line bundle of Vαβ ,

Lαβ := det(Vαβ) = Λrk(Vαβ)(Vαβ).

In inherits the hermitian metric, and turns above equalities into isomorphisms

μαβγ : Lαβ ⊗ Lβγ
// Lαγ .

Then, taking the S1-bundle of unit length vectors yields the first ingredients of the basic

gerbe over G = SU(n).

Literature: [GR02, Mei02, GR03, Nik09]
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1.4 Transgression to loop spaces

One of the most inspiring features of gerbes is that they induce ordinary geometry on loop

spaces. We need the notion of a trivialization.

A trivialization T of a gerbe G is, for each open set Uα, a S1-bundle Tα with connection,

and for each double intersection Uα ∩ Uβ , a bundle isomorphism

ταβ : Pαβ ⊗ Tβ
// Tα

such that the diagram

Pαβ ⊗ Pβγ ⊗ Tγ
μαβγ ⊗id

//

id⊗τβγ

��

Pαγ ⊗ Tγ

ταγ

��
Pαβ ⊗ Tβ ταβ

// Tα

is commutative.

Problem 1.4.1. Show that DD(G) = 0 if and only if G has a trivialization. In particular,

the de Rham cohomology class of the curvature curv(G) vanishes.

Problem 1.4.2. Show that there exists a unique 2-form ρ ∈ Ω2(M) such that

ρ|Uα = Bα − curv(Tα).

Verify that dρ = curv(G).

The 2-form ρ is called the curvature of the trivialization.

Two trivializations T and T ′ are isomorphic, if there exists for each open set a bundle

isomorphism φα : Tα
// T ′

α such that the diagram

Pαβ ⊗ Tβ
ταβ //

id⊗φβ

��

Tα

φα

��
Pαβ ⊗ T ′

β ταβ

// T ′
α
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is commutative. Isomorphic trivializations have the same curvature. Trivializations and

isomorphisms form a groupoid Triv(G).

If Q is a S1-bundle with connection over M , and T is a trivialization of a gerbe G, then

T ′
α := Tα ⊗Q|Uα and τ ′

αβ := ταβ ⊗ id is another trivialization, which we denote by T ⊗Q.

If ρ is the curvature of T then ρ + curv(Q) is the curvature of T ⊗ Q. This defines an

action of the group h0Bun∇
S1(M) of isomorphism classes of S1-bundles with connections on

the set h0Triv(G) of isomorphism classes of trivializations of G.

Problem 1.4.3. Suppose G admits trivializations. Show that this action is free and tran-

sitive.

Suppose G is a gerbe with connection over M , and τ is an element in the loop space

LM , i.e. τ : S1 // M is a smooth map. The pullback τ∗G is a gerbe with connection

over S1. Since H3(S1,Z) = 0, it admits trivializations. We define the non-empty set

LGτ := h0Triv(τ∗G).

It is a torsor over the group h0Bun∇
S1(S)1.

Problem 1.4.4. Show that the map Bun∇
S1(S)1 // S1 : Q � // HolQ(S1) induces a group

isomorphism h0Bun∇
S1(S)1 ∼= S1.

Thus, LGτ is a S1-torsor; it is the fibre of a S1-bundle over LM at the point τ ∈ LM .

The disjoint union LG of all these fibres gives a smooth S1-bundle over LM . We re-

call how the chart neighborhoods of LM are constructed. For τ ∈ LM , we denote by

τ̃ : S1 // S1 × M the map z � // (z, τ (z)). As a section into the trivial M -bundle over

S1, τ̃ is an embedding. Thus, there exists a tubular neighborhood Eτ ⊆ S1 ×M of τ̃(S1).

A chart neighborhood of τ is now the open subset

Vτ :=
{
γ ∈ LM | γ̃(S1) ⊆ Eτ

}
.

It can be identified with an open subset of the Fréchet space Γ(S1, τ∗TM).

Consider the bundle gerbe pr∗2G|Eτ , for pr2 : S1 ×M // M . Since Eτ has τ̃(S1) ∼= S1

has a deformation retract, we have H3(Eτ ,Z) = 0, thus, pr∗2G|Eτ admits a trivialization Tτ .

Now,

sτ : Vτ
// LG : γ � // γ̃∗Tτ
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is a section. We get an induced chart Vτ × S1 // LG : (γ, z) � // sτ (γ) ∙ z.

Problem 1.4.5. Show that the transition functions Vτ1 ×S1 // Vτ2 ×S1 are smooth. In

order to do this, identify the transition functions with the holonomy of a connection on a

certain S1-bundle, and use that the holonomy functional is a smooth map.

If G has a trivialization T , then LG has the global smooth section sT (τ) := τ∗T .

Isomorphic trivializations give the same section.

Literature: [Bry93, Wal10, Walb]

1.5 Loop group extensions

If G is a gerbe over a Lie group G, then its transgression is a principal S1-bundle over the

loop group LG. We want to turn it into a central extension.

In general, if P is a S1-bundle over a Lie group H, a multiplicative structure on P is a

bundle isomorphism

φ : pr∗1P ⊗ pr∗2P // m∗P

over H × H which is associative over H × H × H in the sense that the diagram

pr∗1P ⊗ pr∗2P ⊗ pr∗3P
pr∗12φ⊗id

//

id⊗pr∗23φ

��

m∗
12P ⊗ pr∗3P

m∗
12,3φ

��
pr∗1P ⊗ m∗

23P m∗
1,23φ

// m∗
123P

is commutative. Here, the notation mI1,I2,...,In : G|I1|+...+|In| // Gn means that the

components with indices not separated by a comma are multiplied.

A central extension of H by S1 is a S1-bundle over H together with a multiplicative

structure.

Problem 1.5.1. Check that this is equivalent to the usual definition, according to which

a central extension is a short exact sequence

1 // S1 i // P
p // H // 1

of Lie groups such that i is an embedding and p is a submersion.
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From now on we will use the terminology that an isomorphism

A : G // H

between two bundle gerbes G and H with connections is a trivialization of G ⊗ H∗. It is

called connection-preserving , if its curvature is zero.

If we identify isomorphisms if the corresponding trivializations are isomorphic, we ob-

tain a category Grb(M). Transgression is a functor

L : Grb(M) // BunS1(LM).

A multiplicative structure on a gerbe G with connection over G is an isomorphism

M : pr∗1G ⊗ pr∗2G // m∗G

over G × G, such that the diagram

pr∗1G ⊗ pr∗2G ⊗ pr∗3G
pr∗12M⊗id

//

id⊗pr∗23M
��

m∗
12G ⊗ pr∗3G

m∗
12,3M

��
pr∗1G ⊗ m∗

23G m∗
1,23M

// m∗
123G

over G × G × G is commutative.

So, a multiplicative gerbe is a higher-categorical generalization of a central extension.

Problem 1.5.2. Let H be the curvature of G, and let ρ ∈ Ω2(G ×G) be the curvature of

the isomorphism M. Show that

Hg1 + Hg2 − Hg1g2 = dρg1,g2 and ρg1,g2 + ρg1g2,g3 = ρg2,g3 + ρg1,g2g3

for all g1, g2, g3 ∈ G.

By functoriality of transgression it is clear that a multiplicative gerbe over G trans-

gresses to a multiplicative S1-bundle over LG, i.e. a central extension

1 // S1 // LG // LG // 1.

If G is a connected Lie group, a multiplicative structure determines a lift of the Dixmier-

Douady class DD(G) of G along a homomorphism

H4(BG,Z) // H3(G,Z).
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In order to see this, we infer that BG is the geometric realization of the simplicial manifold

{Xn}n≥0 with Xn := Gn, and the face maps Δn
k : Gn // Gn−1 given by

Δn
0 = pr2,...,n , Δn

n = pr1,...,n−1 and Δn
k = m1,...,k(k+1),...,n for 1 ≤ k < n.

Suppose we have covers Un of Gn compatible with the face maps, meaning that the pullback

of an open set U of Un−1 along each face map Δn
k is contained in an open set of Un. Then

we obtain a double complex

Cp,q := Čp(Uq, S1)

with horizontal differential

Δp,q :=
q∑

k=0

(−1)k(Δq
k)

∗

and vertical differential δ the Čech coboundary operator. The cohomology of the total

complex is a group Hn(BG, S1), which can be shown to be a model for Hn+1(BG,Z). The

homomorphism

Hn+1(BG,Z) // Hn(G,Z)

is simply induced by the projection to the column q = 1, which is the Čech complex of the

open cover U1 of G.

Problem 1.5.3. Show that central extensions of a Lie group H by S1 are clas-

sified up to isomorphism by H3(BH,Z) in such a way that the homomorphism

H3(BH,Z) // H2(H,Z) gives the Chern class of the underlying bundle.

If a multiplicative gerbe is given, then the Čech cocycle gαβγ extracted earlier is an

element in Č2(U1, S1). Similarly, the isomorphism M determines a Čech cochain hαβ in

Č1(U2, S1), in such a way that

gαβγ(g1) ∙ gαβγ(g2) = gαβγ(g1g2) ∙ (δh)αβγ(g1, g2),

which means that Δg = δh. The commutativity of the diagram implies that there exists a

Čech cochain jα in Č0(U3, S1) such that

hαβ(g1, g2) ∙ hαβ(g1g2, g3) = hαβ(g2, g3) ∙ hαβ(g1, g2g3) ∙ (δj)αβ(g1, g2, g3).

If G is connected, there is a unique j such that Δj = 1. Then, the triple (g, h, j) is an

element in the total complex of Cp,q in total degree 3. It thus represents a class

MC(G,M, α) ∈ H4(BG,Z),
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such that DD(G) is its image in H3(G,Z).

The argument that for G connected one can always arrange the choice of j appropriately

goes as follows. When two isomorphisms between gerbes with connection over X are

isomorphic, two such isomorphisms differ by a locally constant smooth map X // S1.

The expression Δj corresponds to such an automorphism of a trivialization of a gerbe over

G4, and thus differs from the identity automorphism by just an element z ∈ S1. Since Δj

has five terms, of which two have positive and three have negative sign, j′ := z−1j satisfies

Δj′ = 1. The same argument shows that j is unique: if j and j′ both satisfy Δj = 1, then

the element z ∈ S1 with j′ = zj satisfies Δz = z = 1.

Literature: [Dup78, Bry, Wal10]

2 Lecture II: Chern-Simons theory via gerbes

2.1 The bicategory of gerbes with connection

Recall that a gerbe consisted of a cover of M by open sets Uα, and data on the double and

triple overlaps. Let Y denote the disjoint union of the open sets, and let π : Y // M

denote the projection (x, α) � // x. This is a submersion, so that fibre products

Y [k] := Y ×M Y ×M ... ×M Y

are well-defined smooth manifolds. Now, Y [k] is the disjoint union of all k-fold intersections.

In this more general terminology, a gerbe with connection over M consists of a surjective

submersion π : Y // M , a 2-form B ∈ Ω2(Y ), a S1-bundle P over Y [2] of curvature

curv(P ) = pr∗2B − pr∗1B, and a connection-preserving bundle isomorphism

μ : pr∗12P ⊗ pr∗23P // pr∗13P

over Y [3] that satisfies an associativity condition over Y [4].

Problem 2.1.1. Transfer the notion of a trivialization, as well as the notion of curvature

of a trivialization to this more general setting. Show that a section s : M // Y induces

a trivialization of curvature s∗B.

For each 2-form B ∈ Ω2(M) we have a trivial gerbe IB with Y := M and π := idM .

We have Y [k] = M for all k, put B as the 2-form on Y , and the rest of the structure trivial.
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Recall that an isomorphism G // H is a trivialization of G ⊗ H∗. The isomorphism is

called connection-preserving , if it has curvature zero.

Problem 2.1.2. Show that a trivialization of G ⊗ H∗ with non-vanishing curvature

ρ ∈ Ω2(M) is the same as a connection-preserving isomorphism G // H ⊗ Iρ. In

particular, a trivialization T of G of curvature ρ is a connection-preserving isomorphism

T : G // Iρ.

We consider an isomorphism φ between two trivializations A and B of G ⊗ H∗ as a

2-isomorphism and denote it by φ : A +3 B. This way, gerbes over M with connections,

connection-preserving isomorphisms, and 2-isomorphisms form a bicategory Grb∇(M).

Literature: [Mur96, Ste00, Wal07]

2.2 The Chern-Simons 2-gerbe

Recall the problem in the definition of the Chern-Simons action: we have to choose a

section s : M // P , but that section might not exist. The following construction does

not need any such choices.

Let g : P [2] // G be the smooth map with p1 ∙ g(p1, p2) = p2. We consider the 2-form

ω := 〈pr∗1A ∧ g∗θ〉 ∈ Ω2(P [2]).

We claim that

CS(pr∗2A) = CS(pr∗1A) − g∗H + dω,

where H is the canonical 3-form on G.

Let’s prove this, using the primitive but very convenient matrix notation. We write

Ai := pr∗i A. Recall the defining property of a connection,

A2 = g−1A1g + g−1dg.

We take the derivative, using that dg−1 = −g−1dgg−1, and that d(ω ∧ η) = dω ∧ η +

(−1)|ω|ω ∧ dη:

dA2 = −g−1dgg−1A1g + g−1dA1g − g−1A1dg − g−1dgg−1dg.

We write tr for the bilinear form 〈−,−〉. The first term of CS(A2) is

tr(A2dA2) = tr(−2A2
1dgg−1 + A1dA1 − (g−1dg)3 − 3A1(dgg−1)2 + dAdgg−1).
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Here we have used that tr is invariant under cyclic permutations in combination with the

sign rule ω ∧ η = (−1)|ω||η|η ∧ ω, which is essentially saying that there is no sign, since a

cyclic permutation will always commute a 1-form with a 2-form in our case. This rule also

implies that for 1-forms ω, η we have tr(ω+η)3 = tr(ω)3 +3tr(ω2∧η)+3tr(ω∧η2)+tr(η)3.

Thus, the second term is

2
3
tr(A2)

3 =
2
3
tr(A1)

3 + 2tr(A2
1dgg−1 + A1(dgg−1)2) +

2
3
tr(g−1dg)3.

The sum is

CS(A2) = CS(A1) + tr(dAdgg−1 − A1(dgg−1)2) −
1
3
tr(g−1dg)3

With the definition of the 2-form ω as chosen above, this given the claimed identity.

Problem 2.2.1. Suppose the connection A is flat. Choose a point x ∈ M and an element

p ∈ P in the fibre over x. Let ρ : π1(M,x) // G be defined via parallel transport of p along

a loop, i.e. ptτ (p) = p ∙ρ(τ) Let M̃ be the universal covering space of M , on which π1(X,x)

acts by deck transformations. Consider Eρ := M̃ ×ρ G, which is a principal G-bundle over

M . Show that Eρ is isomorphic to the original bundle P . Let pr2 : M̃ × G // G be the

projection. Show that pr∗2H descends to a 3-form Hρ ∈ Ω3(Eρ). Show that Hρ = CS(A)

under the identification between Eρ and P .

Next we suppose that we have a gerbe G over G with connection of curvature H. We

consider the gerbe

H = g∗G ⊗ Iω

with connection over P [2]. By above calculation, its curvature is

curv(H) = g∗curv(G) + curv(Iω) = g∗H + dω = pr∗2CS(A) − pr∗1CS(A).

Over P [3] we consider the map g′ : P [3] // G×G such that (p1, p2)∙g′(p1, p2, p3) = (p2, p3).

Consider the 2-form

ρ :=
1
2

〈
pr∗1θ ∧ pr∗2θ̄

〉
∈ Ω2(G × G).

Problem 2.2.2. Show that the 2-forms ω and ρ satisfy the identities

ΔH := pr∗1H + pr∗2H − m∗H = dρ and δω := pr∗13ω − pr∗12ω − pr∗23ω = g′∗ρ.

– 13 –



Next we assume that we have a multiplicative structure M on G of curvature ρ, i.e. a

connection-preserving isomorphism

M : pr∗1G ⊗ pr∗2G // m∗G ⊗ Iρ.

We want to induce a connection-preserving isomorphism

N : pr∗12H ⊗ pr∗23H // pr∗13H

over P [3]. In the notation pr∗ijk() ≡ ()ijk, we define this isomorphism by

H12 ⊗H23 = g∗12G ⊗ g∗23G ⊗ Iω12+ω23

g′∗M // g∗13G ⊗ Ig′∗ρ+ω12+ω23 = H13.

Using a certain 2-isomorphism in the structure of the multiplicative gerbe, one can

complete this structure to the one of a 2-gerbe with connection , consisting of:

(i) a surjective submersion P // M , the bundle projection,

(ii) a 3-form CS(A) ∈ Ω3(P ),

(iii) a gerbe H over P [2] with connection of curvature curv(H) = pr∗2CS(A) − pr∗1CS(A),

(iv) a connection-preserving isomorphism

N : pr∗12H ⊗ pr∗23H // pr∗13H.

of gerbes over P [3],

(v) a 2-isomorphism over P [4], and

(vi) an associativity condition for this 2-isomorphism over P [5].

This 2-gerbe with connection is called the Chern-Simons 2-gerbe associated to the pair

(P,A) and the multiplicative gerbe with connection G.

Everything we have learned about gerbes with connection exists in an analogous way for

2-gerbes with connection. For example, instead of the Dixmier-Douady class in H3(M,Z),

2-gerbes have a characteristic class in H4(M,Z).

Let ξP : M // BG be a classifying map for the G-bundle P , and let

MC(G) ∈ H4(BG,Z) be the characteristic class of the multiplicative gerbe G. Then,

the characteristic class of the Chern-Simons 2-gerbe is given by ξ∗P MC(G) ∈ H4(M,Z).
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This can be seen by simplicial methods. Recall that BG is the geometric realization of

the simplicial manifold with Xn = Gn, and face maps Δn
k . The manifold M is homotopy

equivalent to the geometric realization of the simplicial manifold with Xn = P [n+1] and

face maps prnk : P [n] // P [n−1] that omit the kth factor.

Problem 2.2.3. Check that the maps g : P [2] // G and g′ : P [3] // G2 we have

considered above are parts of a map between simplicial spaces

P

��

P [2]

g

��

P [3]

g′

��

P [4]

g′′

��

. . .

∗ G G2 G3 . . .

Geometric realization is a functor, and the geometric realization of this chain map is

the classifying map ξP : M // BG. Forgetting the connection data, the Chern-Simons

2-gerbe is produced by pulling back all the structure of the multiplicative gerbe along this

map; this shows, essentially, that ξ∗P MC(G) is the characteristic class of the Chern-Simons

2-gerbe.

Problem 2.2.4. The characteristic class of a 2-gerbe is represented in de Rham cohomology

by a curvature 4-form. Define the curvature 4-form of a 2-gerbe with connection, and show

that the curvature 4-form of the Chern-Simons 2-gerbe is

〈FA ∧ FA〉 ∈ Ω4(M),

where FA is the curvature 2-form of the connection A.

Literature: [Joh02, CJM+05, Wal10]

2.3 Higher Gerbes, Higher Holonomy

Suppose P is a principal S1-bundle with connection ω over a smooth manifold M ,

φ : S1 // M is a smooth map. Then φ∗P is an S1-bundle over S1, and so has a

trivialization, i.e. a section s : S1 // φ∗P . Consider the 1-form ωs := s∗φ∗ω ∈ Ω1(S1).

We have

HolP,ω(φ) = exp

(

2πi
∫

S1

ωs

)

.
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Problem 2.3.1. Prove this, by comparing it with the definition of holonomy via parallel

transport. In particular, the expression on the right hand side is independent of the choice

of the section s. Verify this directly!

It is this definition of holonomy that generalizes in a straightforward way to gerbes and

higher gerbes.

Suppose G is a gerbe with connection over M , Σ is a closed oriented surface, and

φ : Σ // M is a smooth map. Then, φ∗G admits a trivialization because H3(Σ,Z) = 0,

for dimensional reasons. Choose a trivialization and let ω ∈ Ω2(Σ) be its curvature. We

define

HolG(φ) := exp

(

2πi
∫

Σ
ω

)

.

If another trivialization is chosen, with curvature ω′, the two differ by an S1-bundle Q

with connection of curvature curv(Q) = ω′ − ω. Since the curvature of an S1-bundle has

integral periods, we get ∫

Σ
ω′ −

∫

Σ
ω =

∫

Σ
curv(Q) ∈ Z;

thus, above definition is independent of the choice of the trivialization.

If G is a 2-gerbe with connection, a trivialization consists of a gerbe T with connection

over Y , of a connection-preserving isomorphism

P ⊗ pr∗2T // pr∗1T

over Y [2] (where P is the gerbe of G over Y [2]), and of a 2-morphism over Y [3]. A triviali-

zation of a 2-gerbe has a curvature 3-form C ∈ Ω3(M), whose derivative is the curvature

4-form of the 2-gerbe. One can show that two trivializations of a 2-gerbe differ by a gerbe

with connection, whose curvature is the difference of the curvatures of the trivializations.

Problem 2.3.2. Define the holonomy of a 2-gerbe with connection for maps φ : B // M

defined on closed oriented 3-dimensional manifolds B.

Literature: [CJM+05, Wal10]
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2.4 The gerbe definition of classical Chern-Simons theory

For a general Lie group G, a Chern-Simons theory K is a symmetric invariant bilinear form

〈−,−〉 on the Lie algebra g and a multiplicative gerbe G with connection such that

curv(G) = H :=
1
3
〈θ ∧ [θ ∧ θ]〉 and curv(M) = ρ :=

1
2

〈
pr∗1θ ∧ pr∗2θ̄

〉
.

These two conditions are precisely those that admit to construct the Chern-Simons 2-gerbe.

Two Chern-Simons theories K and K ′ are equivalent, if the bilinear forms are equal and

the multiplicative gerbes are isomorphic.

I remark that the quadruple of forms (H, ρ, 0, 0) forms a degree 4 cocycle in the sim-

plicial de Rham complex that computes the de Rham cohomology of BG. It is a classical

result of Bott and Shulman that the assignment

Sym2(g∗)G // H4(BG,R) : 〈−,−〉 � // [(H, ρ, 0, 0)]

is the universal Chern-Weil homomorphism. Above conditions imply (but are in general

stronger) that the images of the multiplicative class MC(G) and of 〈−,−〉 coincide.

Let K = (〈−,−〉 ,G) be a Chern-Simons theory for G. Let P be a principal G-bundle

with connection A over a 3-dimensional closed oriented manifold M . Let CSK(P,A) be

the associated Chern-Simons 2-gerbe with connection. Then,

S〈−,−〉,G(P,A) := HolCSK(P,A)(M) ∈ S1

is the Chern-Simons invariant, associated by the Chern-Simons theory K to the pair (P,A).

Problem 2.4.1. Suppose P has a smooth section s : M // P . Show that

S〈−,−〉,G(P,A) = exp

(

2πi
∫

M
s∗CS〈−,−〉(A)

)

.

In particular, the right hand side is independent of the choice of s, and independent of the

multiplicative gerbe G.

With this exercise, we have solved the motivating question from the beginning of Lecture

I: we have defined the Chern-Simons invariant even if the bundle P is not trivializable. The

price for this generalization is that we had to introduce a new parameter for Chern-Simons

theories: a multiplicative gerbe over G with connection of a certain curvature.
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Next we want to discuss the question: how many Chern-Simons theories are there, for a

given Lie group G ? The most general thing is to note that 〈−,−〉 fixes by definition the two

curvature forms of the multiplicative gerbe G. One can show that the set of isomorphism

classes of multiplicative gerbes with connection of fixed curvature is either empty or forms

a torsor over H3(BG, U(1)).

We look at the following cases:

(i) If G is discrete, its Lie algebra is trivial, as are all the forms and connection we have

considered. So the only data is a multiplicative gerbe over G, and these are classified

by H4(BG,Z).

An alternative argument goes as follows. We have H4(BG,R) = 0 because there

are no differential forms. Thus, the connecting homomorphism of the exponential

sequence of groups identifies H3(BG, U(1)) = H4(BG,Z).

Summarizing, for a discrete group G, the set of Chern-Simons theories is canonically

identified with H4(BG,Z). This is a classical result of Dijkgraaf and Witten (Chern-

Simons theories with discrete group are also called Dijkgraaf-Witten theory).

(ii) If G is compact and connected, a classical result of Borel shows that H3(BG,R) = 0

so that that there is an exact sequence

0 // H3(BG, U(1)) // H4(BG,Z) // H4(BG,R).

Thus,

H3(BG, U(1)) = TorH4(BG,Z).

(iii) Suppose G is compact, simple (in particular connected) and simply-connected. Then,

H4(BG,Z) ∼= Z so that TorH4(BG,Z) = 0. Thus, the only datum is the symmetric

bilinear form 〈−,−〉, and it is only the question whether or not multiplicative gerbes

exist. They, do, if 〈−,−〉 is an integer multiple of a basic symmetric bilinear form

〈−,−〉, whose corresponding 3-form H represents the generator. The integer k ∈ Z

is here the only parameter of the Chern-Simons theory.

(iv) If G is compact and simple, but not necessarily simply-connected, then still

TorH4(BG,Z) = 0 so that there are no “exotic” Chern-Simons theories. Also, since

the Lie algebra of g is the same as the one of the universal covering group, the possible

choices of bilinear forms are still parameterized by an integer k ∈ Z. However, it
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is an interesting question whether or not for a given k ∈ Z multiplicative gerbes of

the required curvature exist. This will be discussed in a bit more detail in the next

section.

Literature: [BSS76, DW90, CJM+05, Wal10]

2.5 Chern-Simons theories on compact simple Lie groups

Let G be a compact simple Lie group. Any such group is the quotient of a simply-connected

compact Lie group G̃ by a subgroup Z of the center Z(G̃). The center is always finite, and

in all but one cases it is cyclic. The exceptional case is that of G̃ = Spin(4n), whose center

is Z2 × Z2.

Over the simply-connected Lie group G̃, there is precisely one multiplicative gerbe Gk

with connection of prescribed curvature (H, ρ) for each integer k ∈ Z. We can ask whether

or not Gk descends along the projection pr : G̃ // G.

This question can be exploited by looking at Z-equivariant structures on Gk. We

associate to each element z ∈ Z the map z : G // G : g � // zg. For the gerbe itself, a

Z-equivariant structure consists of:

(i) for each z ∈ Z, a connection-preserving isomorphism Az : z∗G // G,

(ii) for each pair z1, z2 ∈ Z, a 2-isomorphism

(z1z2)∗G

Az1z2

""EEEEEEEEEEEEEEE

z∗1Az2 // z∗1G

φz1,z2

jjjjjj
jjjjjj

px jjjjjjjjjj

Az1

~~~~~~~~~~~~~~~

G

such that a diagram involving three elements z1, z2, z3 ∈ Z is commutative.

In order to explore the obstructions against such a Z-equivariant structure, we note that

the curvature H of Gk is left-invariant, so that z∗H = H is the curvature of z∗G. Since G

is 2-connected, G and z∗G are isomorphic. Since G is simply-connected, φz1,z2 always exist,

but will not make the diagram commute. Instead the error is measured by a map

Z × Z × Z // S1.
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It is a cocycle and defines an element in the group cohomology H3
grp(Z, U(1)). The vanishing

of that element is the obstruction for the existence of an equivariant structure.

The next question is whether or not the multiplicative structure descends, too. By

similar methods, one can obtain an obstruction in H2
grp(Z ×Z, U(1)), whose representative

is the Felder-Gawȩdzki-Kupiainen cocycle.

A nice example is the Lie group G = SO(3), with universal covering group SU(2). The

first obstruction in H3
grp(Z, U(1)) vanishes if and only if k is even. The second obstruction

in H2
grp(Z × Z, U(1)) vanishes if and only if k is divisible by 4.

Literature: [FGK88, GW09]

3 Lecture III: Smooth field theory and string connections

3.1 Smooth field theories

A presheaf F of groupoids over smooth manifolds is an assignment of a groupoid F(T ) to

each smooth manifold T , and functors f∗ : F(T ′) // F(T ) to smooth maps f : T // T ′,

in such a way that for composable smooth maps f : T // T ′ and g : T ′ // T ′′ there

is a natural equivalence f∗ ◦ g∗ ∼= (g ◦ f)∗, and these are again compatible with triples of

composable maps.

We consider two presheaves. Let M be a fixed manifold, the target space of the field

theory. The first presheaf is the presheaf Bord or
n (M) which assigns to T the groupoid

Bord or
n (M)(T ) of n-dimensional oriented bordisms over M parameterized by T . An object

in Bord or
3 (M)(T ) is a locally trivial bundle S // T whose fibres are closed oriented

(n − 1)-manifolds, together with a smooth map φ : S // M on the total space. A

morphism is locally trivial bundle B // T whose fibres are oriented n-manifolds with

boundary separated into two distinct parts S1 and S2, and also equipped with a smooth

maps φ : B // M .

There are subtle technical details related to the composition of morphisms, which we

will gloss over in this lecture. A complete solution to these technical problems is described

by Stolz and Teichner; it involves groupoids internal to categories as well as a certain notion

of open neighborhoods of cobordisms.

The second presheaf we want to consider is the sheaf BunS1 , which assigns to T the
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groupoid of S1-bundles with connection. Both presheaves are presheaves of symmetric

monoidal groupoids: Bord or
n (M) is monoidal with respect to the disjoint union, and BunS1

is monoidal with respect to the tensor product.

A smooth, n-dimensional, oriented field theory over M is a symmetric monoidal mor-

phism between presheaves,

Z : Bord or
n (M) // BunS1 .

Such a morphism assigns to each smooth manifold T a symmetric monoidal functor

Z(T ) : Bord or
n (M)(T ) // BunS1(T )

in a way compatible with smooth maps f : T // T ′.

Typically, a field theory is called quantum field theory if M = pt. In the Stolz-Teichner

program certain field theories are put in relation to generalized cohomology theories, and

a field theory over M is supposed to be the corresponding cohomology ring of M . Quanti-

zation is the pushforward to the point in the cohomology theory; in particular, a quantum

theory is one over the point.

We note three things. First, Bord or
n (M)(pt) is the category whose objects are closed ori-

ented (n− 1)-manifolds with maps to M and whose morphisms are oriented n-dimensional

cobordisms with maps to M . On the other side, BunS1(pt) is the category of S1-torsors.

Thus, Z(pt) assigns a S1-torsor to each smooth map φ : S // M defined on a closed

oriented (n − 1)-dimensional manifold, and an S1-equivariant map to each smooth map

Φ : B // M defined on a n-dimensional oriented bordism. The feature that we may put

more general manifolds then T = pt allows us to say smooth families of maps to M are

send to smooth families of S1-torsors, i.e. S1-bundles.

Second, the empty bundle over the empty manifold is the tensor unit in Bord or
n (M). If

B // T is a bundle of closed oriented n-manifolds, considered as an automorphism of the

tensor unit in Bord or
n (M)(T ), then Z(T )(B) is an automorphism of the trivial S1-bundle

over T , i.e. a smooth map T // S1. In particular, for T = pt we see that Z assigns to

closed oriented n-manifolds numbers in S1.

Third, one can equivalently take complex line bundles instead of S1-bundles. Then, over

T = pt the target is the category of complex lines. More technically, there is a morphism

of sheaves

BunS1
// BunC
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that takes a S1-bundle and associates a complex line bundle by letting S1 act on C by

rotation. One can post-compose any time with this functor, if it seems desirable.

Literature: [ST, Wala]

3.2 Chern-Simons field theory

Chern-Simons theory is supposed to be an example of a smooth oriented field theory in

dimension three. Unfortunately, the target space M is not a smooth manifold; it is the

“stack of G-bundles with connection”, BG∇. Urs Schreiber has developed a theory in

which this makes sense, in such a way that a smooth map φ : B // BG∇ is precisely a

G-bundle with connection over B.

For the purposes of this lecture we avoid the difficulties with this approach by simply

fixing a target smooth manifold M with a G-bundle P with connection A over it, pretending

M is BG∇ and (P,A) is the “universal G-bundle with connection”.

Let K = (〈−,−〉 ,G) be a Chern-Simons theory, and let CSK(P,A) be the associated

Chern-Simons 2-gerbe with connection over M . We want to define a morphism between

presheaves

ZK : Bord or
3 (M) // BunS1 .

Since ZK is a morphism into a sheaf, it suffices to define it on small manifolds T . More

precisely, we only have to define ZK on trivial bundles S = T × Σ of closed oriented

surfaces, and on trivial bundles B = T × B of oriented cobordisms. Note that this is not

the same as just considering T = pt, since the maps φ : S // M and Φ : B // M are

still allowed the vary over T .

To start with the definition of ZK on the objects, let S = T × Σ for a closed oriented

surface Σ, and let φ : S // M be smooth, i.e. (S , φ) is an object in Bord or
3 (M)(T ). Via

the exponential law for smooth maps, φ is the same as a smooth map

φ∨ : T // C∞(Σ,M).

We have to construct a S1-bundle ZK(T )(S , φ) over T . The construction has two parts:

the first part is a transgression procedure, which takes the Chern-Simons 2-gerbe CSK(P,A)

to a S1-bundle TΣ over C∞(Σ,M). The second part is just pullback along φ∨.

The construction of the S1-bundle TΣ is analogous the transgression of a gerbe with

connection to the loop space described in Lecture I. Its fibre over a point f ∈ C∞(Σ,M)
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is the set of isomorphism classes of trivializations of f∗CSK(P,A),

TΣ|f := h0Triv(f∗CSK(P,A)).

Such trivializations exist because H4(Σ,Z) = 0 for dimensional reasons. Analogous to

a result of Lecture I saying that S1-bundles with connections act free and transitively

on the trivializations of a gerbe with connection, it is true that the group h0Grb∇(X) of

isomorphism classes of gerbes with connection over X acts free and transitively on the set

h0Triv(G) of isomorphism classes of trivializations of a 2-gerbe G with connection over X.

In particular, the fibre TΣ|f is a torsor over the group h0Grb∇(Σ). One can show that the

holonomy map

h0Grb∇(Σ) // S1 : G � // HolG(idΣ)

is a group isomorphism. Hence, the fibre TΣ|f is an S1-torsor, and TΣ is a smooth S1-bundle

over C∞(Σ,M).

Summarizing, we have defined

ZK(T )(S , φ) := (φ∨)∗TΣ.

We continue with the definition of ZK on morphisms. Let B be an oriented bordism

between surfaces Σ1 and Σ2, i.e. a 3-manifold with boundary Σ1 t Σ2. Again, a smooth

map Φ : T × B // M is the same as a smooth map Φ∨ : T // C∞(B,M). We regard

(B × T, Φ) as a morphism in Bord or
3 (M)(T ) from (Σ1 × T, φ1) to (Σ2 × T, φ2), where

φi := Φ|Σi×T . We have to define a bundle isomorphism

ZK(T )(B × T, Φ) : ZK(T )(Σ1 × T, φ1) // ZK(T )(Σ2 × T, φ2)

over T .

We denote by ιi : Σi
// B the two inclusions. For a point F ∈ C∞(B,M), we denote

by fi := F ◦ιi ∈ C∞(Σi,M) the restriction to Σi. Let T be a trivialization of F ∗CSK(P,A).

Such exist because H4(B,Z) = 0. Note that ι∗iT is a trivialization of f∗
i CSK(P,A), i.e. an

element in TΣi |fi
. Unlike in the case of surfaces, T is not necessarily flat, and so has a

curvature C ∈ Ω3(B). Now there is a unique map

ϕF,T : TΣ1 |f1
// TΣ2 |f2

between S1-torsors such that

ϕF,T(ι
∗
1T) = ι∗2T ∙ exp

(

−2πi
∫

B
C

)

.
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Problem 3.2.1. Show that the map ϕF,T is independent of the choice of T, which is the

reason for the exponential term in the definition of ϕF,T . In order to do this, show that

any other trivialization T′ is isomorphic to T ⊗G for G a gerbe with connection over B, in

such a way that C ′ = C + curv(G). Use (or try to prove) that the holonomy of a gerbe G

with connection over a 3-dimensional oriented manifold B satisfies the identity

exp

(

2πi
∫

B
curv(G)

)

= HolG(∂B).

One can show that the maps ϕF fit into a smooth bundle isomorphism

ϕ : r∗1TΣ1
// r∗2TΣ2

over C∞(B,M), where ri : C∞(B,M) // C∞(Σi,M) are the restriction maps. The final

step is again by pullback along Φ∨ : T // C∞(B,M); by construction this gives the

desired bundle isomorphism over T .

Problem 3.2.2. Show that if B is a closed oriented 3-manifold and Φ : B // M is a

smooth map, considered as an automorphism of the tensor unit, then ZK(pt)(B, Φ) ∈ S1

is the Chern-Simons invariant SK(Φ∗P, Φ∗A).

Problem 3.2.3. Extend the Chern-Simons invariant SK from closed oriented 3-manifolds

to oriented 3-manifolds with boundary. That is, associate to an oriented 3-manifold B a

S1-bundle over C∞(∂B,M ) together with a section S∂
K of its pullback along the restriction

map r : C∞(B,M) // C∞(∂B,M ), such that, if ∂B = ∅, S∂
K = SK . Consider two ways

of performing this construction: first, work over the point T = pt. Second, work with

T = C∞(B,M) and T = C∞(∂B,M ).

Literature: [Wala, Sch11]

3.3 Extension all the way down to the point

In this section we pretend that we have a good definition of a presheaf Ext-Bord or
3 (M) of

extended bordisms. This is a presheaf of tricategories, which assigns to a smooth manifold

T the tricategory Ext-Bord or
3 (M)(T ) in which a k-morphism is a bundle of k-dimensional

oriented cobordisms over T , together with smooth maps to M on their total spaces. In par-

ticular, the objects of Ext-Bord or
3 (M)(T ) are “bundles of points” over T with a smooth map
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to M , i.e. just a smooth map f : T // M . The restriction of Ext-Bord or
3 (M)(T ) to the

category of endomorphisms of the empty 1-morphism is the old category Bord or
3 (M)(T ).

As of today, I don’t know a definition of Ext-Bord or
3 (M). The problems are, just as

for Bord or
3 (M), the various composition (i.e., gluing) maps, and the fact that cobordisms

have itself isomorphisms.

In the present setting it is very easy to extend the smooth field theory ZK from

Bord or
3 (M) to an extended field theory Ext-ZK on Ext-Bord or

3 (M). The target of Ext-ZK

is the sheaf 2-Grb of 2-gerbes, i.e. it is a symmetric monoidal morphism

Ext-ZK : Ext-Bord or
3 (M) // 2-Grb

of sheaves of tricategories. The endomorphism category of the identity 1-morphism of the

trivial gerbe is BunS1 , so that the right hand side also reduces to the non-extended case.

The extension of ZK is defined as follows. Its value on an object, i.e. on a smooth

family f : T // M of points, is

Ext-ZK(f) := f∗CSK(P,A);

a 2-gerbe over T (actually, one with connection). In particular, we see that the cobordism

hypothesis is obviously true in the present setting of smooth field theories, since the com-

plete Chern-Simons field theory Ext-ZK (or ZK) is determined by the 2-gerbe CSK(P,A).

It remains to say what the value of Ext-ZK on a family of oriented 1-dimensional man-

ifolds is. We shall restrict ourselves to closed 1-manifolds. There is a way to transgress the

Chern-Simons 2-gerbe CSK(P,A) over M to a gerbe LCS over LM . If G is a connected

group, there is an easy bypass for this construction, because taking free loops in the pro-

jection P // M of a G-bundle P is then again a surjective submersion LP // LM . This

will be the surjective submersion of the gerbe LCS over LM that we want to construct.

Notice that there are canonical diffeomorphisms L(P [k]) ∼= (LP )[k]. Thus, the gerbe H with

connection over P [2] transgresses to a S1-bundle over (LP )[2]. Finally, the isomorphism N

over P [3] transgresses to the required bundle isomorphism over (LP )[3].

Given the transgressed gerbe LCS over LM , we define the value of Ext-ZK on a 1-

morphism as follows. We consider a S1-bundle L over T together with a smooth map

φ : L // M . Assuming that T is small enough, we have L ∼= S1 × T , and φ can be

identified with a smooth map φ∨ : T // LM . The value of the extended Chern-Simons
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theory Ext-ZK on a smooth family of circles is

Ext-ZK(T )(S1 × T, φ) := (φ∨)∗L.

Literature: [Wal10]

3.4 String connections as trivializations of Chern-Simons theory

Suppose M is an n-dimensional spin manifold, i.e. it is Riemannian, oriented and equipped

with a spin structure. Recall that a spin structure is a lift of the structure group of the

frame bundle FM of M from SO(n) to its universal covering group

1 // Z2
// Spin(n)

p // SO(n) // 1 .

Such a lift is a principal Spin(n)-bundle P over M together with an equivariant bundle

map ϕ : P // FM , i.e. ϕ(x ∙ g) = ϕ(x) ∙ p(g) for all x ∈ P and g ∈ Spin(n).

Since Spin(n) extends SO(n) by the discrete group Z2, the Levi-Cevita connection ϑ

on FM induces a connection A on P . As connection 1-forms, this connection is given by

A := ϕ∗ϑ (note that the Lie algebras of SO(n) and Spin(n) are equal).

For n > 4, Spin(n) is a Cartan Lie group, i.e. compact, simple, and simply-connected.

Let 〈−,−〉 be the basic symmetric invariant bilinear form on the Lie algebra of Spin(n), i.e.

it is normalized such that the associated 3-form H represents a generator of H3(Spin(n),Z).

Let G be the basic gerbe over Spin(n), which carries a connection of curvature H. Since

H4(BSpin(n),Z) // H3(Spin(n),Z)

is an isomorphism, G carries a unique multiplicative structure whose curvature is the

canonical 2-form ρ determined by 〈−,−〉. The class MC(G) ∈ H4(BSpin(n),Z) is

usually denoted by 1
2p1, since twice of this class is the pullback of the first Pontrya-

gin class p1 ∈ H4(BSO(n),Z) along the covering map Spin(n) // SO(n). The class
1
2p1 ∈ H4(BSpin(n),Z) is a universal characteristic class for Spin(n)-bundles; if P is a

Spin(n)-bundle over a smooth manifold M , with a classifying map ξP : M // BSpin(n),

then 1
2p1(M) := ξ∗P (1

2p1) ∈ H4(M,Z) is the associated characteristic class of P .

The data Kbas := (〈−,−〉 ,G) defines a canonical Chern-Simons theory for G = Spin(n).

If M is a spin manifold with spin structure P and Levi-Cevita connection A, the Chern-

Simons 2-gerbe CSKbas
(P,A) over M has the class 1

2p1(M) ∈ H4(M,Z).
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In algebraic topology, a spin manifold M is called string manifold if 1
2p1(M) = 0.

Now the question is: what is a string structure? There is a topological group String(n),

well-defined up to homotopy equivalence, and sitting in an exact sequence

1 // BU(1) // String(n) // Spin(n) // 1,

such that a spin manifold M is string if and only if the structure group of the spin structure

P can be lifted from Spin(n) to String(n). Accordingly, a string structure on M is a

String(n)-bundle S over M together with an equivariant bundle morphism S // P .

There are two important differences between the step from oriented manifolds to spin

manifolds, and the step from spin manifolds to string manifolds:

1. The string extension is not an extension by a discrete group, in particular it becomes

non-trivial to lift connections on a spin bundle to connections on a string bundle.

2. String(n) is not a finite-dimensional Lie group . This can be seen in the following

way. By exactness of the sequence above, the fibre over a point of Spin(n) is BU(1),

which is a K(Z, 2) and so has cohomology in infinitely high degrees. Thus, String(n)

contains closed subspaces that are not finite-dimensional manifolds.

That String(n) is not finite-dimensional raises the question, what a connection on a

string bundle is supposed to be, after all.

Stolz and Teichner used smooth field theory, in particular Chern-Simons theory, in

order to circumvent the problem that String(n) is, roughly speaking, not “geometric”.

Since the class 1
2p1(M), whose vanishing characterizes string manifolds, corresponds to

the Chern-Simons theory Ext-ZKbas
over M , Stolz and Teichner defined a geometric string

structure to be a trivialization of that Chern-Simons theory Ext-ZKbas
. In this setting,

such a trivialization consists of trivializations of all the geometric structure in the target

presheaf 2-Grb of Ext-ZKbas
.

We have seen that the extended smooth field theory Ext-ZKbas
over M is completely

determined by the Chern-Simons 2-gerbe CSKbas
(P,A) over M . Thus, in our setting, a

trivialization of the Chern-Simons theory Ext-ZKbas
is a trivialization T of the 2-gerbe

CSKbas
(P,A).

In order to summarize, consider again a spin manifold M , with P its spin structure

and A its Levi-Cevita connection. Let Kbas = (〈−,−〉 ,G) be the data of the canonical

– 27 –



Chern-Simons theory on Spin(n), which allows the construction of the Chern-Simons 2-

gerbe CSKbas
(P,A) with connection over M . A geometric string structure on M is defined

to be a trivialization T of CSKbas
(P,A). Recall that such a trivialization consists of a gerbe

S with connection over P , of a connection-preserving isomorphism

A : H ⊗ pr∗2S // pr∗1S

of gerbes over P [2], and of a 2-isomorphism over P [3] satisfying a coherence condition

over P [4]. A separation of a geometric string structure in “data without connections” and

“connection data”, is usually called string structure and string connection .

We can understand this definition as a convenient method to circumvent all complica-

tions arising from (a) the fact that String(n) is not a finite-dimensional Lie group and (b)

the problem to provide all the details of extended bordism presheaf Ext-Bord or
3 (M).

Problem 3.4.1. Verify that geometric string structures on M form a bicategory. Show

that the set of isomorphism classes of geometric string structures forms a torsor over the

group h0Grb∇(M) of gerbes with connection over M .

Problem 3.4.2. Show that a geometric string structure on M determines a 3-form

J ∈ Ω3(M) whose derivative is the Pontryagin 4-form,

dJ =
1
2
〈FA ∧ FA〉 ,

where FA is the curvature of the connection A on P . Show that under the action of a gerbe

J with connection over M (see the previous problem) the 3-form J is shifted by curv(J ).

A string class on a spin manifold M with spin structure P is a class ζ ∈ H3(P,Z) such

that the restriction of ζ to a fibre of P , under any identification of this fibre with Spin(n),

becomes a generator of H3(Spin(n),Z). One can show that the existence of a string class

on M implies that 1
2p1(M) = 0. In that sense, one can use string classes as a version of

string structures (without connection data).

Problem 3.4.3. Consider a geometric string structure on M , including the gerbe S with

connection over P . Show that DD(S) ∈ H3(P,Z) is a string class. Show that the following

three statements are equivalent:

1. 1
2p1(M) = 0, i.e. M is a string manifold.
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2. M admits a string class.

3. M admits a geometric string structure.

Problem 3.4.4. Show that the set of string classes is a torsor over the group H3(M,Z).

Show that the map S � // DD(S) from the previous problem is equivariant.

Literature: [McL92, ST04, Red06, Wala, SSS09, NSW, Wal12]

3.5 Anomaly cancellation with geometric string structures

The classical sigma model is a 2-dimensional smooth field theory

Z : Bord or,cf
2 (M) // BunS1 ,

where Bord or,cf
2 (M) is the presheaf of 2-dimensional oriented conformal bordism. Its target

space M is a Riemannian manifold equipped with a gerbe G with connection, often called

B-field . For a smooth manifold T an object in the category Bord or,cf
2 (M)(T ) is a bundle

S of circles (which we can assume to be trivial, S = S1 × T ), equipped with a smooth

map φ : S // M (which is the same as a smooth map φ∨ : T // LM). We have

Z(S , φ) := (φ∨)∗LG,

where LG is the S1-bundle over LM obtained from G via transgression (see Lecture I).

Problem 3.5.1. Recall that in 2-dimensions, a conformal structure and an orientation is

the same as a complex structure. Try to define the values of Z on the morphisms B of

Bord or,cf
2 (M)(T ), such that for T = pt, B = Σ a Riemann surface, and Φ : Σ // M a

smooth map,

Z(B, Φ) = exp

(

2πi
∫

Σ
g(dΦ ∧ ?dΦ)

)

∙ HolG(Φ),

where g denotes the Riemannian metric on M and ? denotes the Hodge star operator de-

termined by the conformal structure of Σ. Above expression is called the action functional

of the sigma model.

In order to discuss supersymmetric sigma models, we would have to upgrade everything

to supermanifolds. There is the following shortcut. Instead of a super-Riemann surface,

we consider a Riemann surface with a spin structure, a certain Spin(2)-bundle P over
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Σ. Associated to it via the spinor representation is a rank one vector bundle S over Σ.

(Feeding this into Batchelor’s theorem produces the supermanifold structure on Σ we are

looking for. ) A map Σ // M between the super-Riemann surface Σ and the target

manifold M (not super) can now be described as an ordinary smooth map Φ : Σ // M

together with a section ψ of the vector bundle VΦ := Φ∗TM ⊗ S over Σ.

We want to define the action functional for the supersymmetric sigma model, which as-

sociates to pair (Φ, ψ) a number in S1. It contains the two terms of the non-supersymmetric

sigma model of the previous problem, and an additional term depending on ψ. In order to

define this term, one defines a Dirac operator /DΦ : Γ(VΦ) // Γ(VΦ) using that VΦ inherits

a metric and a connection from the metrics on Σ and M . The additional term is

ZΦ(ψ) := exp

(

2πi
∫

Σ

〈
ψ, /DΦψ

〉
dvolΣ

)

.

The anomaly of the supersymmetric sigma model arises when one performs the

“fermionic path integral”

AΦ :=
∫

Γ(VΦ)
ZΦ(ψ)dψ.

Upon correctly interpreting what is meant by this integral, it turns out that it is not – as

one would expect – a complex number. Instead, AΦ can be interpreted as a well-defined

element ρ(Φ) in a one-dimensional complex vector space PΦ. Moreover, the vector space

PΦ is the fibre of a complex line bundle P over the manifold C∞(Σ,M), and the elements

ρ(Φ) form a smooth section ρ : C∞(Σ,M) // P (typically with zeroes).

The interpretation of the fermionic path integral AΦ as the value of a section ρ of the line

bundle P is based on the notion of a Berezinian integral. If V is a vector space of dimension

2n, the pfaffian of a skew-symmetric linear map f : V // V ∗ is pf(f) := 1
n!f

n ∈ Λ2nV ∗,

where we use that skew-symmetric is the same as being an element f ∈ Λ2V ∗. The

Berezinian integral is the map
∫

: Λ∗V ∗ // Λ2nV ∗

which simply projects to the degree 2n part. For f ∈ Λ2V ∗ we get
∫

exp(f) = pf(f).

The application of this simple linear algebra to the present situation requires some

spectral theory, of which we will not present any details. There exists a cover of C∞(Σ,M)
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by open sets Uμ and for all Φ ∈ Uμ a subspace Vμ,Φ ⊆ Γ(VΦ) of finite dimension 2nμ, such

that

PΦ = Λ2nμVμ,Φ and ρ(Φ) = pf(fμ,Φ),

where

fμ,Φ : Vμ,Φ
// V ∗

μ,Φ : ψ � // 2πi
∫

Σ

〈
−, /DΦψ

〉
dvolΣ.

Thus, applying above linear algebra to V := Vμ,Φ and f := fμ,Φ we get the well-defined

relation ∫
exp(fμ,Φ) = pf(fμ,Φ) = ρ(Φ) ∈ PΦ.

The left hand side is the proposed rigorous interpretation of the fermionic path integral

AΦ; in order to motivate this, substitute the expression for fμ,Φ and introduce two ψ’s and

a dψ.

The next step is to compute the “bosonic path integral”
∫

C∞(Σ,M)
exp

(

2πi
∫

Σ
g(dΦ ∧ ?dΦ)

)

∙ HolG(Φ) ∙ ρ(Φ) dΦ.

In contrast to the fermionic path integral, the bosonic path integral can – at present time

– not be defined rigorously. But even before defining the integral, the problem occurs that

the integrand is not a complex-valued function, but, as described above, a section in the

complex line bundle P . This is the anomaly of the supersymmetric sigma model. The

procedure of transforming the section into a function is called anomaly cancellation .

The easiest method of anomaly cancellation is, obviously, to provide a trivialization of

the line bundle P . A more involved method is the so-called Green-Schwarz mechanism ,

which adds another term to the action functional that can be identified with a section in

the dual bundle P∨.

In the following I want to point out briefly how geometric string structures lead to a

cancellation of the anomaly by providing a trivialization of P . We require that the target

space M carries a spin structure P and a geometric string structure, i.e. a trivialization

T of the Chern-Simons 2-gerbe CSKbas
(P,A). We recall that CSKbas

(P,A) transgresses

to a S1-bundle TΣ over C∞(Σ,M), for Σ a closed oriented surface. By functoriality of

transgression, the geometric string structure T transgresses to a trivialization sT of TΣ.

It is known from classical index theory that the Chern classes of P and of the complex

line bundle associated to TΣ coincide,

c1(P ) = c1(TΣ ×S1 C).
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Recent work of Bunke provides a canonical isomorphism of line bundles over C∞(Σ,M)

that realizes this equality. Together with this canonical isomorphism, the trivialization

sT produces a trivialization of P . Hence, the integrand of the bosonic action functional

becomes a smooth, complex valued function on C∞(Σ,M), and the anomaly is cancelled.

Literature: [Fre87, FM06, Wala, Bun11, Wal11]
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