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Extension of Topology by Geometry:

Man S // Diff D // Top

S equips a manifold with the smooth diffeology

(the plots are all smooth maps U → M)

D equips a diffeological space with the D-topology

(the biggest topology such that all plots are continuous)
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Motivation from joint work with Urs Schreiber on (higher) parallel
transport.

I Parallel Transport and Functors [SW09]
J. Homotopy Relat. Struct. 4, 187-244 (2009)

I Smooth Functors vs. Differential Forms [SW11]
Homology, Homotopy Appl., 13(1), 143-203 (2011)

I Connections on non-abelian Gerbes and their Holonomy
[SW09]
Theory Appl. Categ., Vol. 28, 2013, No. 17, pp 476-540

Related work also using diffeological spaces by Barret [Bar91] and
Caetano-Picken [CP94].



The space of smooth paths in a smooth manifold,

C∞([0, 1], M),

is a Fréchet manifold.

We want to make this manifold the morphisms of a (Fréchet) Lie
groupoid, with:

I Source map γ 7→ γ(0).

I Target map γ 7→ γ(1).

I Composition law: path concatenation.

Not possible!



1st problem – concatenation of smooth paths is not smooth.

Solution: consider paths with “sitting instants”.

2nd problem – concatenation is not associative.

Solution: divide out by homotopies.

Better solution: divide out by thin homotopies.

Each of these solutions does not yield a Fréchet manifold, but – of
course – nice diffeological spaces.



More precisely, we use the functor

S : Man→ Diff.

By the way, the functional diffeology on a set of smooth maps
(from a closed manifold to a smooth manifold) coincides with the
smooth diffeology of the Fréchet manifold [Wal12b, Lemma
A.1.7]:

C∞
Diff([0, 1], S(M)) = S(C∞

Man([0, 1], M)).

Once we’ve passed to Diff, we can readily set:

PM – the subspace of paths with sitting instants.

PM – the quotient of PM by thin homotopies.

For example, using PM we obtain a Theorem like this [SW09,
Prop. 4.7]:

Fun∞(PM, BS(G )) ∼= Ω1(M, g)//C∞(M, G )



Motivation from my work on string geometry.

I Spin structures on loop spaces that characterize string
manifolds [Wal16a]
Algebr. Geom. Topol. 16 (2016) 675709

I Transgressive loop group extensions [Wal17]
Math. Z. 286(1) 325-360, 2017

I Connes fusion of spinors on loop space [KW]
Preprint, with Peter Kristel

Further ongoing work with Peter Kristel and Matthias Ludewig.



Transgression sends bundle gerbes (certain higher-geometric
objects) over a manifold M to principal bundles on the free loop
space

LM := C∞(S1, M).

Principal bundles in the image of transgression differ from arbitrary
ones by the fusion property [Wal16b].

Relevant here are the fibre products PM [k] of PM → M ×M.

An element in PM [3] looks like this:

Sitting instants allow the looping map PM [2] → LM. When pulling
back, we need to consider principal bundles over a diffeological
space.



The basic central extension

1→ U(1)→ ˜LSpin(d)→ LSpin(d)→ 1

of the loop group of Spin(d) can be obtained by transgression, and
hence has the fusion property.

There is a model for the string 2-group String(d) where
composition is given by fusion [Wal12a]:

˜LSpin(d)

����

PeSpin(d)



Important for these applications as the functor

S : Man→ Diff.

It is rather well-behaved:

1. It is fully faithful.

2. It preserves finite products and coproducts whenever these
exist in Man.

3. It preserves submanifolds: if N ⊆ M is an embedded
submanifold, then the subspace diffeology on N ⊆ S(M)
coincides with S(N).

4. Losik proved that it extends fully faithfully to Fréchet
manifolds [Los92].

5. It extends to more general manifolds modelled on locally
convex spaces. Wockel proved that it is fully faithful whenever
the manifold is locally metrizable [Woc13].
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Now let us turn to the functor

D : Diff → Top.

One motivation comes from ongoing joint work with Peter Kristel
and Matthias Ludewig.

We want to relate two 2-groups

String(d)→ Aut(A)

where Aut(A) is the automorphism 2-group of a von Neumann
algebra, a topological 2-group.



However, the functor D : Diff → Top is not so well-behaved:

1. It has a right adjoint, and hence preserves all colimits.

2. It doesn’t preserve subspaces: if A ⊆ X is a subset, then the
subspace topology A ⊆ D(X ) is finer than the D-topology of
A.

Sufficient condition: A is a smooth retract of an open subset.

3. It doesn’t preserve products.

Sufficient condition: one of the factors is locally compact.

4. It doesn’t preserve mapping spaces; the D-topology of
C∞(M, N) is between the weak and strong topologies.

Sufficient condition: M is compact.

These are results of Christensen-Sinnamon-Wu [CSW14].



Since D does not preserve products, a diffeological group has in
general no underlying topological group:

If G is a diffeological group, and m : G × G → G is its smooth
multiplication, then we have continuous maps

D(G )× D(G )
id
← D(G × G )

D(m)
→ D(G ),

where the identity might not be a homeomorphism.

A possible solution was found by the work of
Christensen-Sinnamon-Wu [CSW14], Kihara [Kih19],
Shimakawa-Yoshida-Haraguchi [SYH]:

Co-restrict D to Δ-generated topological spaces,

DΔ : Diff → TopΔ.

This still preserves all colimits, but now also preserves products.



In particular, every diffeological group now has an underlying
Δ-topological group.

This extends to diffeological 2-groups.

Moreover, with Kristel and Ludewig we show that the
automorphism 2-group Aut(A) of a von Neumann algebra is
Δ-generated.

In our work on string geometry, we can thus establish the relation
between the two 2-groups as a continuous functor

DΔ(String(d))→ Aut(A)

between Δ-generated 2-groups.



Another solution is to replace the D-topology functor by another
functor: the geometric realization of the singular complex.

This is pursued in recent work of Kihara [Kih] and Bunk
[Buna, Bunb].
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We have now discussed the sequence

Man→ Diff → Top

as a sequence of functors.

However, all three categories are often upgraded to sites in order
to have a notion of locality. With such notion, we can talk about

I sheaves and stacks

I fibre bundles, gerbes,...

So it is interesting to see how notions of locality on Man, Diff,
and Top correspond to each other.

A site is a category together with a Grothendieck topology.



A Grothendieck topology on a category C is a subclass
T ⊆ Mor(C) of morphisms called coverings such that

I every isomorphism is a covering,

I the composition of coverings is a covering, and

I the pullback of a covering along an arbitrary morphism is a
covering.

I.e., if π : Y → M is a covering and φ : N → M is a
morphism, then the pullback

φ∗Y //

φ∗π

��

Y

π

��

N
φ

// M

exists and φ∗π is a covering.



The category Man of smooth manifolds does not have many
Grothendieck topologies because the existence of fibre products (in
particular, pullbacks) is obstructed.

I Tlocdiff – Surjective local diffeomorphisms (the big site)

I Tsursub – Surjective submersions (an even bigger site).

Obviously, Tlocdiff ⊆ Tsursub.

Conversely, every surjective submersion can be refined by a
surjective local diffeomorphism:

∐
Ui

""DDDDDDDD
// Y

π
����������

M

This means that these two Grothendieck topologies are
equivalent: On Man, there is only a single notion of locality, and
differential geometers do not need to bother with such matters.



Application I: Sheaves.



A presheaf of sets on a category C is a functor

F : Cop → Set,

where Set is the category of sets.

If X is a topological space, let C := OpenX be the category whose
objects are the open sets of X , and whose morphisms are all the
inclusions U ↪→ V of open sets. A presheaf on OpenX is what one
usually finds in the textbooks.

If C is a site, then a presheaf is called sheaf, if for all coverings
π : Y → X the diagram

F(X )
π∗

// F(Y )
//
// F(Y ×X Y )

is an equalizer.

Fact: equivalent Grothendieck topologies have the same sheaves.



A Grothendieck topology is called subcanonical, if for every
covering the diagram

Y ×X Y
//
// Y // X

is a coequalizer.

Fact: on a subcanonical site, every representable presheaf is a
sheaf.

The Grothendieck topologies Tlocdiff and Tsursub on Man are
subcanonical. Thus, all presheaves of the form C∞(−, M) are
sheaves.



Application II: Fibre bundles.



Let C be a site with finite products.

A fibre bundle over an object X ∈ C with typical fibre F ∈ C is a
morphism

B

p
��

X

such that there exists a covering π : Y → X and an isomorphism

Y × F
∼= //

prY
##FFFFFFFFF π∗B

π∗p
}}zzzzzzzz

Y



In the example of the site Man this is precisely the usual definition
of a smooth fibre bundle.

Fact: equivalent Grothendieck topologies yield the same fibre
bundles.

Meyer-Zhu give analogous definitions of principal bundles,
groupoids, etc. internal to arbitrary sites [MZ15].



Now we look at some Grothendieck topologies on the category of
diffeological spaces.



A smooth map π : Y → X is called subduction if plots lift locally:

Y

π
��

x ∈ Ux

σ
//

� � // U c
// X

It is called a local subduction if it is surjective and for every point
y ∈ Y , every plot c : U → X , and every x ∈ U with c(x) = π(y),
the open set Ux and the section σ can be chosen such that
σ(x) = y .

Subductions and local subductions each form subcanonical
Grothendieck topologies Tsubduc and Tlocsubduc on Diff.

We have Tlocsubduc ⊆ Tsubduc , but I believe that these
Grothendieck topologies are not equivalent.



A smooth map π : Y → X is called a D-local diffeomorphism if
each point y ∈ Y has a D-open neighborhood U ⊆ Y such that
π(U) ⊆ X is D-open and π|U : U → π(U) is a diffeomorphism.

A smooth map π : Y → X is called D-submersion if for every
point y ∈ Y there exists a D-open neighborhood A ⊆ X of π(x)
together with a smooth map σ : A→ Y such that π ◦ σ = idA and
σ(π(x)) = y .

A smooth map π : Y → X admits D-local sections if every point
x ∈ X has a D-open neighborhood A ⊆ X together with a smooth
map σ : A→ Y such that π ◦ σ = idA.

These form subcanonical Grothendieck topologies

Tlocdiff ⊆ Tsursub ⊆ Tlocsec ,

and these inclusions are equivalences.



Every surjective D-submersion is a local subduction:

Tsursub ⊆ Tlocsubduc .

Every D-local sections admitting map is a subduction:

Tlocsec ⊆ Tsubduc .



Graph of inclusions of Grothendieck topologies on Diff

Tlocdiff

∼
��

Tsursub

∼

%%KKKKKKKKK

xxqqqqqqqqqq

Tlocsubduc

&&MMMMMMMMMM Tlocsec

yysssssssss

Tsubduc



A functor F : C→ D between categories with Grothendieck
topologies is called continuous, if

1. it maps coverings to coverings, and

2. it preserves the pullbacks of coverings.

Facts:

I Sheaves pull back along continuous functors:

If F : Dop → Set is a sheaf on D, then F ∗F := F ◦ F op is a
sheaf on C.

I Fibre bundles are mapped to fibre bundles by continuous
functors that preserve finite products:

If p : B → X is a fibre bundle in C, then F (p) : F (B)→ F (X )
is a fibre bundle in D.



We talked about the functor S : Man→ Diff.

If M is a manifold, then the D-open sets of S(M) are precisely the
open sets in the manifold topology.

Lemma: The following are equivalent for a smooth map
f : M → N between manifolds:

1. f is a surjective submersion

2. S(f ) is a surjective D-local submersion

3. S(f ) is a local subduction

Non-trivial implication 3 → 1 e.g. proved by van der Schaaf [vdS].

Thus, S is continuous, e.g. when considered as

S : (Man, Tlocdiff )→ (Diff, Tlocdiff )

S : (Man, Tsursub)→ (Diff, Tsursub)→ (Diff, Tsubduc)



The functor S induces via pull back a functor

S∗ : Sh(Diff, Tsubduc)→ Sh(Man, Tsursub).

The comparison lemma of Grothendieck-Verdier [MLM92, App.
A.4] gives a criterion when this functor is an equivalence:

1. S is fully faithful and continuous X

2. Every diffeological space X has a covering π : S(N)→ X .

The second condition is satisfied for the nebula N of X ,

N :=
∐

c:U→X

U

for which π : S(N)→ X is a subduction.

Note: the nebula is not a covering in any of the other
Grothendieck topologies on Diff.



Thus, we have an equivalence

Sh(Diff, Tsubduc) ∼= Sh(Man, Tsursub).

It has in fact a canonical inverse.

To see this, it is useful to regard a diffeological space X as a sheaf

X : Open→ Set

in the usual way. If F is another sheaf on Man, we set

F(X ) := HomPSh(Open)(X , F|Open)

Examples:

I applied to the sheaf F = Ωk of differential forms on Man, this
gives the usual sheaf on Diff; it is a sheaf w.r.t. to Tsubduc .

I everything holds for sheaves of categories, and thus can be
applied to fibre bundles, principal bundles, etc.



Graph of Grothendieck topologies on Top

Tlochomeo

∼
��

Ttopsub

∼

%%KKKKKKKKKK

xxrrrrrrrrrr

Tsuropen

&&LLLLLLLLLL
Tlocsec

yyrrrrrrrrrr

Tsur

These Grothendieck topologies are all subcanonical. There exist in
fact more Grothendieck topologies on Top, e.g. Meyer-Zhu list 10
different ones [MZ15].



Recall the functor D : Diff → Top.

Lemma: if f : X → Y is a local subduction between diffeological
spaces, then D(f ) is an open map.

This is proved by Iglesias-Zemmour [IZ13, §2.18].

If f : X → Y is just a subduction, then I do not know what can be
said about D(f ) other than being surjective.



Compatibility of Grothendieck topologies

Diff D // Top

Tlocdiff

,,

∼
��

Tlochomeo

∼
��

Tsursub
,,

∼

""DDDDDDDD

~~||||||||
Ttopsub

∼

##FFFFFFFF

{{vvvvvvvvv

Tlocsubduc
++

!!BBBBBBBB Tlocsec 22

||yyyyyyyy
Tsuropen

$$HHHHHHHHH
Tlocsec

{{wwwwwwwww

Tsubduc 33 Tsur



However, D is not continuous because it does not preserve
pullbacks.

Again, one solution is to co-restrict to Δ-generated spaces.

I DΔ pullbacks back sheaves on TopΔ w.r.t. Tsuropen to
sheaves on Diff w.r.t. Tlocsubduc .

I DΔ sends fibre bundles in Diff w.r.t. Tlocdiff to fibre bundles
in TopΔ w.r.t. Tlochomeo .

Note that the comparison lemma cannot be applied because
neither D nor DΔ are full.



There is another notion of locality on diffeological spaces that does
not fit into the notion of a Grothendieck topology, let’s call it
plotwise-local.

For example, a smooth map p : B → X is a plotwise-local fibre
bundle, if for every plot c : U → X and every point x ∈ U there
exists an open neighborhood x ∈ Ux ⊆ U such that

c∗B |Ux
∼= Ux × F .

This is the definition of fibre bundles one finds in the book of
Iglesias-Zemmour [IZ13] and in newer references, e.g.,
Krepski-Watts-Wolbert [KWW].

Lemma: Plotwise-local is equivalent to locality w.r.t. Tsubduc .



Lemma: Plotwise-local is equivalent to locality w.r.t. Tsubduc .

Proof. Suppose p : B → X is plotwise-local. Choose, for each plot
c : Uc → X , an open cover Uc = (Ui )i∈Ic of Uc , together with
diffeomorphisms φi : c∗B |Ui

→ Ui × F . Then,

π : Y :=
∐

c

∐

i∈Ic

Ui → X

is a subduction. Because if now c : Uc → X is a plot and x ∈ Uc ,
then pick i ∈ Ic with x ∈ Ui , and let σ : Ui → Y be the inclusion.
(We see here that π has no chance to be, e.g., a local subduction.)
The diffeomorphisms φi yield a diffeomorphism π∗B ∼= F × Y .

Conversely, suppose p : B → X is Tsubduc -local. Let π : Y → X be
a subduction with φ : π∗B ∼= Y × F . Let c : U → X be a plot and
x ∈ U be a point. Because π is a subduction, there exists an open
neighborhood x ∈ Ux ⊆ U with a section σ : Ux → Y . Then, σ∗φ
is a diffeomorphism from σ∗π∗B = c∗B |Ux to
σ∗(Y × F ) = Ux × F .



Summary

Locality (on diffeological spaces) is a matter of a Grothendieck
topology

Tlocdiff

∼
��

Tsursub

∼

%%KKKKKKKKK

xxqqqqqqqqqq

Tlocsubduc

&&MMMMMMMMMM Tlocsec

yysssssssss

Tsubduc

In relation with manifolds, and in relation with plot-wise locality,
the Grothendieck topology Tsubduc of subductions seems to be
most relevant.
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maps”. Cah. Topol. Géom. Différ. Catég., LIII:162–210, 2012. [arxiv:0911.3212].

[Wal16a] Konrad Waldorf, “Spin structures on loop spaces that characterize string manifolds”. Algebr. Geom.
Topol., 16:675–709, 2016. [arxiv:1209.1731].

http://arxiv.org/abs/1209.1731
http://arxiv.org/abs/0911.3212
http://arxiv.org/abs/1201.5052
http://arxiv.org/abs/0802.0663
http://arxiv.org/abs/0705.0452v2


[Wal16b] Konrad Waldorf, “Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with
connection”. Asian J. Math., 20(1):59–116, 2016. [arxiv:1004.0031].

[Wal17] Konrad Waldorf, “Transgressive loop group extensions”. Math. Z., 286(1):325–360, 2017.
[arxiv:1502.05089v1].

[Woc13] Christoph Wockel, Infinite-dimensional and higher structures in differential geometry . Lecture notes,
Universität Hamburg, 2013.
Available as: http://www.math.uni-hamburg.de/home/wockel/teaching/data/

HigherStructures2013/hs.pdf.

http://www.math.uni-hamburg.de/home/wockel/teaching/data/HigherStructures2013/hs.pdf
http://www.math.uni-hamburg.de/home/wockel/teaching/data/HigherStructures2013/hs.pdf
http://arxiv.org/abs/1502.05089v1
http://arxiv.org/abs/1004.0031

	Motivation
	Parallel transport
	String geometry
	The smooth diffeology functor

	The D-topology
	The D-topology functor
	Delta-generated spaces

	Locality
	Grothendieck topologies
	Presheaves
	Fibre bundles
	Grothendieck topologies on diffeological spaces
	Continuous functors
	Comparison with smooth manifolds
	Grothendieck topologies on topological spaces
	Plotwise locality

	References

